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WHIRLING OF THE SINGLE MASS ROTOR 

ABSTRACT 

The general  equations of motion for a single mass, unbalanced 

rotor  on a mass l e s s  elastic shaft w i t h  damping a r e  presented and analyzed 

for  various conditions of synchronous and nonsynchronous precession o r  

whirling, 

damping considerably influences the rotor  charac te r i s t ics  and yields 

resu l t s  different f rom those previously reported for the case  of no 

damping. External damping in general, suppresses  cer ta in  motions and 

permi ts  only forward synchronous precession. With light rotor  damping, 

a whir l  ra t io  of 1/ 3 is predicted when the rotor is operating at three  t imes 

the ro tor  cr i t ical  speed. 

The analysis shows that the  introduction of the external 
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BACKGROUND AND INTRODUCTION 

The first recorded ar t ic le  on "whirling" o r  precessing of a 

shaft was presented in 1869 by Rankine (1) who introduced the concept 

of indifferent rotor  equilibrium. Because he neglected the influence 

of the Coriolis force he concluded that; motion is stable below the first 

c r i t i ca l  speed, is neutral  o r  in  "indifferent" equilibrium at the c r i t i ca l  

speed, and unstable above the cr i t ical  speed. The neglect of the Coriolis 

term has caused severa l  wr i t e r s  t o  deduce a fictitious c r i t i ca l  condition 

at l / f i  t imes  the cr i t ical  speed. 

During the next half century, this  analysis led engineers t o  

believe that operation above the f i rs t  c r i t i ca l  speed was impossible. 

It was not until 1895 that De Lava1 demonstrated experimentally that 

a s t e a m  turbine was capable of sustained operation above the first 

c r i t i ca l  speed. 

Although both Dunkerly (2) in 1894 and Chree (3) in 1904 did 

extensive studies on the natural  la teral  vibrations of shafts, it was 

not until 1919 that H. H. Jeffcott (4) explained the motion of the single 

mass rotor  (see Fig. 1). 

opera te  at the c r i t i ca l  speed i f  sufficient damping on the rotor  is 

Jeffcott demonstrated that a rotor could 

present .  Assuming that the angular velocity of the rotor  is constant, 

Jeffcott  a r r ived  at the conclusion that the center  of the rotor  revolves 

o r  p r e c e s s e s  at the s a m e  angular velocity as the disc.  

of t he  rotor  centerline moving with the same angular velocity as the 

This condition 
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FIGURE I 

SINGLE MASS FLEXIBLE ROTOR 
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mass center is defined as synchronous precession. 

Newkirk (5, 6), in 1924, discovered severa l  instances of rotor  

whirling or  nonsynchronous precession in which the plane of the bent 

shaft rotated at the shaft cr i t ical  speed while the  shaft itself rotates at 

a higher speed. The cause of this whirl motion was l a t e r  identified to  

be due to  influences such as internal rotor  friction and fluid film bearings,  

and represents  a self-excited vibration (7,8). 

Por i t sky  (1 1) and others furnish considerable insight into this phenomenon. 

Works of Hagg (9 ) ,  Hori ( l o ) ,  

Robertson (12) in 1935 conducted an  experimental  and theoretical  

investigation on the t ransient  whirling of the single mass Jeffcott rotor.  

Robertson observed that the rotor  elastic centerline could possess  both 

forward and backward preces  sive motion depending upon the initial 

conditions. 

to  die  out until only the steady-state synchronous component caused by 

unbalance remained. 

of the  rotor  was sufficient to  cause it t o  s t r ike  the guard ring was it 

possible to  develop a sustained transient m o t i w .  

The influence of external damping causes  the t ransient  motion 

He observed that only in the case  where the deflection 

Although the re  is considerable mater ia l  in the l i t e ra ture  on rotor 

dynamics and whirling, t he re  i s  still a lack of understanding of the whirl  

behavior of even fundamental systems such as the Jeffcott model. 

in h i s  recent  paper on rotor  whirling, has  attempted to  analyze the various 

whi r l  motions possible with the single mass Jeffcott model. Since Kane 

a s sumed  a conservative system, he predicted various modes of forward 

Kane (13), 
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and backward precessive motion which a r e  not generally observed in 

practice.  

In this analysis,  the influence of external damping and gravity 

i s  considered on the general  whirling motion of the shaft. The resu l t s  

show that there  is a considerable difference in the behavior of the 

cons e rvative and dis  s ipative systems. 

Equations of Motion 

Fig. 1 descr ibes  the system under consideration in which the 

Z-axis  in a conventional right-handed coordinate sys tem coincides with 

the axis of the rotor in the undeformed o r  undeflected position (i. e . ,  

position of axis with no dynamic or gravity forces  acting) "C" descr ibes  

the geometr ic  center of the rotor ;  I'M'', the m a s s  center of the ro tor ,  

the two being separated by a distance, "e", the eccentricity.  It i s  

a s sumed  f o r  the system that the coordinates X, Y, Z ,  a r e  fixed in space. 

The angular position of the rotor  is given by two quantities, the 

precess ion  angle, 9, and the phase angle, p .  
of the  system, then, is given by 

The total  angular velocity . 
w = p t 9, in which the dot over a 

quantity indicates the derivative of the quantity with respect  t o  t ime.  

In F ig .  1, the direction of deformation of the shaft i s  given by the line 

OC, noted by 

space).  

-5 
n r G r  and % a r e  orthogonal unit vec tors  moving in 9 

The system under consideration possesses  th ree  degrees  of 

f reedom. The two se t s  of generalized coordinates which may be 

employed to  descr ibe this  sys tem are :  
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(a) 6 - deflection of rotor center  f rom origin 0 .  

4 - precession angle 

/3 - phase angle 

o r  

(b) X, Y - Cartesian coordinates of the displaced rotor center 

p - phase angle 

In this  analysis,  the f i r s t  coordinate sys t em will be used. Jeffcott (4) in 

his  analysis used the Cartesian coordinate representation, which does 

not readily allow evaluation of whirling in general. 

th ree  degrees  of freedom, there  will be th ree  equations of motion; one 

Since the sys tem has  

for each generalized coordinate. 

Lagrange ' s  Equations of Motion 

The three required equations of m 

of Lagranges Equations which state: 

Where: 

L = Lagrangian = T - V  

tion will be der i  ed by means 

F = Generalized force f o r  the q coordinate. 9' r 
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Kinetic Energy 

The kinetic energy of the system is given by 

T = 1 / 2  MVZm t 1/2 a. w .  +ij . 
1 J  

A position vector t o  the rotor m a s s  center M f rom the fixed point 

0 is given by: 

P ' O  = [ 6  t e c o s p ] ;  r t e s i n p ;  4 -  

The velocity of the mass center M is given by: 

R;R' r;M/O. [ 3 ~  

dt dt 

Expanding Eq. 3 resu l t s  in 

If the disc  is constrained to  move in the X - Y  plane only (no gyroscopic 

fo rces ) ,  then the total kinetic energy of the sys tem i s  given by 

1 - {m[ 
2 

- e o  sin P I 2  t m [  6 + t e a  cos P ]  t I u'> [ 5 ]  - - 
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Potential Energy - V 

The potential energy of the rotor is composed of the s t r a in  energy 

of deformation of the rotor and the ver t ical  position of the rotor  m a s s  

center .  

1 V = 2 K  62 t mgh 

where 

K = rotor  stiffness coefficient 

h -  - p / o  - - n = 6 s i n + +  e sin ( p  t +) 
Y 

1 
2 .*. v = - K tj2 t mg [6 s i n  ~p t e sin (p t +)] . [7 1 

Generalized Forces  

The external forces  and torques acting on the sys tem which have 

not been taken into consideration i s  the  rotor damping force  acting at C 

and t h e  rotor  dr ive torque T. The damping force acting at C i s  given by: 

The generalized forces  for  each of the coordinates a r e  given by 
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= - C t j 2 + - T .  

The Lagrangian of the  sys t em is given by 

The equations of motion of the system are  thus given by the following: 

. 
t K 6 = - C 6  

m e [ w ( 6  c o s p  t 6  (PsinP) t g COS (P + + ) I  = - T 
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(c) (P;m d [ g 2 ; - e &  s i n p t e ’ w t e 6  c o s p ( ~ t & ) t K ~ w ]  t 
I dt 

If the total  angular velocity of the sys tem is assumed to  be constant 

e .  

o = + t /3 = constant 
.e 0. 

& = O ;  a n d p  = -  + . 

Hence, the equations of motion reduce to  

c *  
m c r  

.. 
(a) 6 ; 6 t - 6 t (a2 - +2) 6 ’= ew2cos p - g s i n +  

The torque T will be eliminated between [ 12b and c] t o  yield the system: 

.* 
(a) 

(b) 

6 t K ij t (02  

6 Cp t (K 6 t 2  6 )  + = eU2 sin p - g cos + . 

- $>6  = ea2 cos p - g s in  + 
S c r  

e. 

S 
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ANALYSIS O F  ROTOR MOTION 

Specific cases  for the governing equations of motion will be 

considered: 

Case  I - Synchronous Precess ion  

Synchronous precession implies that  the precession ra te  + 
of the rotor  is equal t o  the total angular velocity of the sys tem 0 . The 

equations of motion a re :  

(b) 6 t (Ks 6 t 26 ) 9 = ea2 s in  j3 - g cos 9 . [ I 6 1  

Assume a condition of steady-state whirling of a ver t ical  rotor .  

condition implies : 

This 

6 = constant 6 = w = constant 

p = constant g = o .  

The governing equations reduce to: 

(b) Ks 6 w = eaz sin p . 
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Solving for the phase angle p :  

KSW t a n @  = 
o2 - a2 

c r  

Solving for the rotor  deflection 6 

1 

The force  t ransmit ted to  each bearing is given by: 

F = ( - K e ) A  1 

2 

where A = amplitude factor = C2Q 1 1 

The amplification factor  A is in agreement with the resu l t s  obtained 

by Jeffcott. Fig. 2 represents  a plot of the rotor  amplification factor 

f o r  var ious values of damping. 

The cr i t ical  speed is defined as the speed at which 
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- - Ke { K s ~ Z t 2 ( w z  - d ) ~ ~  } = 0 . P I 1  
cr cr  

2[K: wz t (a2 c r  - w2)2]3/2 

If we assume that the denominator will be non- zero,  the actual 

sys t em resonance frequency is given by 

S 

cr 

F r o m  the above equation, it can be seen that only for  the case  of 

z e r o  damping (Ks = 0)  will the system resonance frequency (cr i t ical  speed) 

correspond to  the natural  l a t e ra l  frequency 

of damping will increase  the system resonance frequency a s  can be seen 

f r o m  Fig.  2. 

w $ .  In general ,  the effects 
c r  

The maximum force  transmitted to  the bearings during the sys tem 

resonance is given by: 

F max = < ' [23 1 
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In general ,  the ra t io  wcr /Ks >> 1.0. In this  case  the maximum force 

t ransmit ted may be expressed by: 

eo - cr  
max - 2  F [24  1 

Thus, it is seen that wi h the perfec ly  balanced rotor  (e = 0), the 

force t ransmit ted to  the bearings w i l l  be  zero.  

value will exist  for  e depending upon the rotor  balancing equipment 

used. 

In actuality a finite 

Case  I1 - Zero  Precess ion  

The condition of ze ro  precession implies that  the rotor  vibrates  

in a plane. This is given by the  precessional angular velocity Cp = 0 

(b) 0 = ea2 s in  p - g cos 4 . [ 2 5  3 

The above condition is possible only i f  the eccentricity e (unbalance) 

o r  the total  angular velocity w is zero.  

equation of motion is 

In ei ther  case  the result ing 

.. 
6 t K s i  t w z  cr 6 = O  



which is the equation of f ree ,  damped l a t e ra l  vibrations,  

t o  note that the majority of present  methods for  calculating cr i t ical  speeds 

are based upon finding the natural  la teral  frequencies of undamped motion. 

F r o m  this  simple model it is seen that the normal  unbalanced rotor doesn'  t 

vibrate  in a plane but revolves or  precesses  to  f o r m  an orbit. 

Case I11 - Secondary Cri t ical  Speed (Effect of Gravity) 

Assume rotor  synchronous precession 

It is important 

+ =  0 

+ = u t - @  

(b) 2 w t K 0 6  = eoz s in  p - g cos (at - p )  . 
S 

Solving [27d for a particular solution we obtain 

6 = - -  2D e s inp  - - ~ [ s i n ( w t - P ) + ~ c o s ( w t - p ) I  

where 

[27 1 

[28] mus t  a l so  represent  a particular solution of [274. 

the above into the first equation of motion resu l t s  in the following conditions 

Substitution of 
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to  be me t  in order  that  6 be a valid solution. 

cos p = 0 
2D (a) s in  p - 

2 (+) - 1  

02- w2 

(b) 2[1 t D 2 ]  [ 3 + + D z t (  w 2  sin ( u t - @ ) =  0 [ 2 9  1 

w 2  - u2 
(c ) gD [+ t ( w 2  c r  ) ]  cos (ut - p )  = 0 

2[1 t D2] 

The f i r s t  condition,. .Equation [ 291 is satisfied by the requirement 

that  the  rotor  phase angle p be given by 

- 1  KS p = t an  
u2 -ut 

c r  

the above is identical to  Eq. [ 18 ] obtained for synchronous precession 

in general .  The second relationship requi res  that 

uz - u2 

u2 

cr = o  5 3 t  -D2 t 2 

o r  

cr 2 c r  
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The above condition represents  the system secondary cr i t ical  speed. 

Note that the last two conditions a r e  identically satisfied if  g = 0 and 

w may be any speed. 

Eq. [29c] requires  that either 

or 

R D  = o .  
2 [ 1  t Dz] 

(b) 

w 

which is in conflict with Eq. [ 31 1 . 

The first condition leads to  the contradictory statement that  

Thus it i s  necessary  that 

- 0 .  gD 

2[ 1 t D2] 

Substitute 5 st = rotor  sta-ic defl c t i  Mn 
K n =  

KS C 
and D =  2 w = -  2Mw 
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UKs6s t  N cu & s t  

:. (2) [ 1 t D 2 ]  m 

The third condition implies that the rotor  damping force 

C 

or  

w 6 divided by the bearing mass  M must  be a small quantity 

=damping - 
m 

in o rde r  t o  observe a secondary system cr i t ica l  speed. 

c r i te r ion  may help to  explain why secondary cr i t ical  speeds have 

sometimes been observed with heavy, mass ive  low speed 

turboro tors ,  but seldom with light-weight high speed ro tors .  

the sys t em damping character is t ics  a r e  too high, this phenomenon 

is completely suppressed. 

This 

If 

w c r  
The rotor  deflection at  the secondary cr i t ical  speed ( w = 7 

f o r  light damping) is given by 

- e - %t [sin ( - t  - 8 )  t 
&[28]  - [30] [ 1 t Dz] 

w 
D cos (* t - p)] 
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Hence we conclude that when the rotor  angular velocity is equal 

t o  one half the first cr i t ical  speed, a horizontal rotor  is capable of 

processing a secondary cr i t ical  speed. The radius of the whirl  orbit  

is equal t o  twice the static deflection (or initial rotor  sag),  Note that 

gravity is not the only cause of secondary c r i t i ca l  speeds. Rotors with 

unsymmetr ic  shaft propert ies  can cause excessive rotor  deflection (14). 

The investigation of the possible occurrence of subcri t ical  

resonance vibrations has  been discussed by severa l  authors.  Rankine, (1) 

in his  ear ly  publications on vibrations 

vibration at fl2 w c r  was possible. 

e r roneous  since Rankine neglected the 

equations of motion. Stodola (1 5) w a s  

of ro tors ,  stated that a resonance 

This value was later shown t o  be 

Coriolis acceleration t e r m  in his 

the first t o  demonstrate  that  the 

d isc  weights of a horizontal shaft can c rea te  disturbing forces  which a t  

a cer ta in  speed can produce considerable shaft vibration. Timoshenko 

gives a simplified explanation of the secondary c r i t i ca l  speed effect, 

developed along the l ines of Stodola, in his  text Vibration Problems in 

Engineering (16). 

phenomenon was reported as early a s  1919 by F6PPL (17). 

The actual observation of the secondary cr i t ical  speed 

An extensive a r t ic le  on the subcri t ical  speeds of a rotating shaft 

was presented by Soderberg (18) in  the past decade. 

and compares  the resonance amplitudes at the c r i t i ca l  speed to  the rotor  

subcr i t ica l  vibrations caused by gravity and by variable rotor  elasticity 

f o r  an undamped rotor .  

speed  due to gravity, he a r r i v e s  at the following equation 

Soderberg examines 

In his investigation of the secondary cr i t ical  
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d'r - w' t 2p w' s in  ut) r = wcr 2 F ( U t r  e 

where r is the displacement of the rotor  mass center f r o m  the steady- 

s ta te  position. 

The Eq. [ 291 of Ref. (18) is a nonhomogeneous Mathieu equation 

of the fo rm 

d2W 
dz 
'7 t [ d  t E c o s z ]  w=c 

and its solutions and regions of stability are discussed in detail  in 

Stoker (19). 

equation considering the t e r m  (2pr a2) sin w t  as a forcing function 

independent of r ,  which resul ts  in  

Soderberg approximates the solution by solving the 

He then concluded that since r becomes unbounded when the 

ro tor  speed is exactly one-half the ro tor  cr i t ical  speed, then the rotor  

precess ion  angle must  be of the form 

[37 1 8 = wt t x at s i n a t  

which leads to a higher o rde r  Mathieu Equation. 

when w = w  /2 is given by 

The solution he obtains 

c r  
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where 

E = ey 0 (2)' 
Even though the 

; p = radius of gyration . 

t e r m  E i s  a small quantity, Soderberg 

predicts that the vibration amplitudes of an undamped rotor  will 

become unbounded i f  operated continuously at one-half the rotor 

c r i t i ca l  speed. 

that the subcrit ical  vibration amplitude of an undamped rotor  is 

bounded and a l so  that the inclusion of sufficient rotor  damping will 

suppress  this phenomenon, 

This finding is in contrast  to  Eq. (34)  which shows 

Case  IV - General Whirling (Non-Synchronous Precess ion)  

Let 

= nu 

The equations of motion (neglecting gravity) are, 

.. 
(a) 6 t K t [a2 t (1 - I I ) ~ ~ '  ] 6 = ea2 cos (nwttpo).  [ 3 9 ]  

S cr 

(b) [ 2 6 + K  S 6 1  ~ [ l - n ]  = e w 2 s i n ( n w t t p o ) .  
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Solving for 6 

where p - (Y = not t /3 - tan-’ (2) . 

Applying the initial condition of 

0 

0 
6(0) = 6 

6 = A - R COS (Po - CY) 
0 

where 

Hence 

-az cr t (l-n)‘wZ] t nwKSR s in  (0 - a )  - ewzcos/3 = O  E42 1 

23 
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. (The above equation represents  an  extension of the work of Kane (13)  

who neglected the effects of damping in h is  equations. 

that even for  the case  of light damping, the nature  of the solutions 

is considerably altered.  ) 

It will be seen 

Problem: 

Do any values of n exist such that the above equation i s  

satisfied for  all t ime t ? 

If we consider light damping then 

[ (2n - 1)2 u2 - uLr ] C O S  p = o . *- [43 I 

Consider values of n (other than 0 o r  1) which will make the 

above equation identically vanish. 

Let 

u2 - (1 - n ) 2 a 2  = o 
, cr 
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and 

Solving for n 

n = 2 / 3 .  

Hence 

c r  w = 3 0 c r  and 4 = w 

The above condition implies that if the rotor  angular velocity 

of the sys tem is three  t imes  the natural  l a t e ra l  c r i t i ca l  frequency w , 

one possible motion is for  the system t o  p recess  at a r a t e  equal t o  the 

c r i t i ca l  speed. 

pressur ized  gas bearing rotor (20) and has  been re fer red  to  as "Fractional 

frequency whirl. " (Although the single mass Jeffcott model i s  physically 

unlike a rigid rotor  o r  externally pressurized bearings,  the equations 

of cylindrical  precession a r e  similar.  ) 

This has been reported t~ occur with an externally 

As a second case  consider the less stringent condition that the 

t rans ien t  whirl dies out. The steady s ta te  equation (t - 00) i s  

25 



Consider the case  where w :: w or  the angular velocity is c r  

much higher than the first cr i t ical  speed. In this ca se  [ 4 6 ]  reduces 

to  

(2n - 1)2 = o 

Hence 

i = w / 2 .  

Thus we have demonstrated that half- frequency whirling is 

possible only in the limiting case  as  the rotor  approaches speeds 

considerably grea te r  than the f i r s t  cr i t ical .  

t o  obtain this  conclusion unless damping is retained in the equations 

of motion. 

Note that it i s  impossible 

Half-frequency whirling is  usually associated with hydrodynamic 

fluid film bearings.  

r ep resen t  the bearing s t i f fness  character is t ics ;  a radial  "spring" r a t e  

and a tangential spring rate .  

of-phase bearing fo rce  which causes self excited half-frequency whirl  

t o  Occur at approximately twice the ro tor  cr i t ical  speed (11). 

absence  of this  force  half-frequency whirling cannot occur. 

At leas t  two bearing coefficients a r e  required to  

It is the presence of the tangential o r  out- 

In the 
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SUMMARY AND CONCLUSIONS 

In Table I are presented a summary of the various forms  of rotor  

F o r  each particular case  there  are three  subsections which 

Line A which represents  

whirling. 

represent  various degrees  of rotor  damping. 

the rotor  behavior with ze ro  damping, was obtained f r o m  Ref. 

Line B represents  the rotor  performance with non-zero damping forces .  

It is important to  note the influence of even smal l  damping on the 

(13). 

rotor  character is t ics .  F o r  example, in the f i r s t  two cases  which 

represent  synchronous rotor preces  sion, the introduction of damping 

eliminates the possibility of backward synchronous motion and a l so  

causes  the rotor  phase relationship to be single valued. 

lB, we see  that if the rotor  i s  running a t  the cr i t ical  speed or  resonance 

frequency, then the rotor  amplitude will increase  continuously with t ime.  

If the ro tor  damping is non-zero (10) then the ro tor  amplitude will be 

bounded. 

of the ro tor  unbalance e. 

ro tor  c r i t i ca l  amplification factor,  Acr = qcr / K  for  a simple system, 

and is an important parameter  in the study of rotor  stability. 

r ep resen t s  ro tor  synchronous precession in general. 

given i n  2C is identical to  the resul ts  stated by Jeffcott (4) and Fig. 2 

r ep resen t s  a plot of this  function. 

ro tor  phase angle to  be ze ro  at low speed and increase  smoothly with 

speed t o  a maximum value of TT. 

In case  1A and 

The rotor deflection at  the c r i t i ca l  speed will be some multiple 

This amplitude factor i s  r e fe r r ed  to  a s  the 

S 

Case 2 

The rotor  deflection 

Notice in 2C that damping causes  the 

For  a single mass rotor  in which the 
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T A B L E  I 
DESCRIPTION OF VARIOUS MODES OF ROTOR MOTION 

PRECESSION 
ASE I ROTOR SPEED I DAMPING 1 RATE - ROTOR DEFLECTION, 6 

~- 

ROTOR PHASE ANGLE, 0 

A I  6 = S o  i e  wcr/2 t t B/2 

t T/2 

t ll /2 

I 

2 

3 

4 

C I  

A I  I K,=O'" 

0 i f  w < Wcr 
B i f  w > W c r  

C I  

A I  ( 1 1  I KS=O U N REST RlCTE D 

Wcr UNRESTRICTED 

Wcr UNRESTRICTED 

( w  t wcr)/2 

SAME AS IB 

c l  I KS f O  SAME AS IC 

~ A 

SUPPRESSED TRANSIENT 

SUPPRESSED TRANSIENT 

W- EXlSTENl NON -EXISTENT 

- 2 e  COS w / 2 t  UNRESTRICTED I K,=O (2 

w = 1/2 wcr I K s  = 0 w -2  s,, SIN (wcr t /2 )  t e/3'31 

w = 1/2 x 
B K, #0'2' 

Jig=giiq 
SAME AS 2C w 
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motion is confined in a plane, there  i s  only one phase angle. 

rotor  cr i t ical  speed of this  sys tem the rotor  phase angle i s  90"  and 

the eccentricity vector i s  orthogonal to  the rotor  deflection. 

additional degrees  of freedom such a s  con cal  modes or  mul t i -masses  

a r e  introduced into the system, there  will be additional rotor  phase 

angles corresponding to  each mode. 

At the 

If 

2. 

3.  

F r o m  the examination of Cases 1 ,  2, and 7 ,  the following 

charac te r i s t ics  concerning rotor  synchronous precession a r e  summarized 

a s  follows: 

1. F o r  small values of the damping parameter  and (or)  

w <<w the phase angle p i s  zero.  Thus, for  srriall 

damping and speeds below the f i r s t  cr i t ical  speed, the 

unbalance is in phase with the maximum deflection and 

the m a s s  center rotates  about the volume center.  

As the rotor  speed w approaches the cr i t ical  speed w 

the phase angle p approaches T/2. 

damping i s  present ,  amplitudes of vibration of dangerous 

proportions can result .  

F o r  the condition where w >>w and low damping, the 

phase angle approaches T a s  a limit. In this situation 

the volume center is revolving around the m a s s  center  

and the force t ransmit ted to the bearings reaches an 

asymptote equal t o  Ke/2. 

c r  ' 

c r  ' 
At this speed, i f  no 

c r  
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4. 

5. 

6 .  

7. 

8. 

If la rge  amounts of damping a r e  present  in the system, 

a peak vibration is not observed at the sys tem cr i t ical  

speed. 

to  e as the rotor  speed w increases  f rom 0 to  o >> w . 
The system cr i t ical  speed increases  slightly with an 

increase  in viscous damping. 

corresponds t o  the natural  la teral  frequency of vibration 

w only for the case  when the damping i s  ze ro  or  the 

damping forces  a r e  proportionate to the velocity squared (21). 

The rotor phase angle is  a single valued and continuous 

The rotor  deflection increases  smoothly f rom o 

c r  

The sys tem cr i t ical  

c r  

function in a damped system. 

Synchronous backward precession is  not possible even in 

a lightly damped rotor .  

A lightly damped horizontal rotor  may exhibit a secondary 

cr i t ical  speed effect when operating at one-half the rotor  

f i r s t  cr i t ical  speed. 

imately twice the rotor static deflection (Case 7). 

The rotor whirl orbit will be approx- 

The cases  3 through 6 represent  various modes of whirling or 

non- synchronous precession. 

the ro to r  speed reaches th ree  t imes the rotor  cr i t ical  speed, the rotor  

is capable of forward or  backward precession equal t o  the rotor  cr i t ical  

For  example Case 3 shows that when 

speed  w . The inclusion of damping, however minute, eliminates the 
cr  

possibil i ty of backward precession. 

this  motion is possible only i f  the sys tem damping i s  light, i. e . ,  i f  

If finite damping i s  considered, 

K s / 2  w << 1.0.  
c r  
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In all of the above cases  of whirling in general ,  it was found 

that the inclusion of sufficient damping will  suppress  all whirl  tendency 

and permit  only synchronous forward rotor  precession. 

of damping into the equations of motion considerably changes the 

fundamental nature of the motion a s  described i n  Ref. (13).  F o r  

example, Case 4 reduces to  Case 1 and Case 5 vanishes altogether 

when damping is considered. 

whirling a r e  3 and 6. Case 6 states that  the rotor  i s  capable of half- 

frequency whirling ( (Po = w / 2 )  when the rotor speed becomes infinitely 

high for  a lightly damped system. 

unreal is t ic ,  cannot be obtained from a sys tem in  which the damping 

i s  excluded. 

The inclusion 

Thus the only two distinct ca ses  of 

Note that this  conclusion, although 

In conclusion we find that it i s  impossible to  examine o r  explain 

the occurrence  of rotor  whirling by means of a conservative system. 

It is impossible with this system to completely explain the rotor whirling 

a s  observed by Newkirk, Stodola, Pinkus and others.  Whirling or  

nonsynchronous precession can occur only in non-conservative sys tems 

in which the sys tem dissipation function possesses  special  charac te r i s t ics  (8). 
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. .  

NOMENCLATURE 

A 

C 

C 

e 

F 

F 

g 

I 

K 

k 

K 

L 

m 

n 

9r 

S 

0 

A 2  

nr' n~ 

P 

9r 

R 

R '  

T 

t 

Rot o r  amplification, fact or  

Rotor volume center 

Damping coefficient 

Eccentricity of rotor  unbalance m a s s  

F o r c e  

Generalized force 

Gravity 

Rotor polar moment 

Rotor spring ra te  

Radius of gyration 

of inertia about C. G. 

Damping factor = C/m, Rad/  s e c  

Lagrangian 

Rotor m a s s  

Coefficient 

Undeflected rotor  position 

Unit vector set  fixed in reference f rame R '  

Posit ion vector 

Generalized coordinate 

Fixed reference f r a m e  

Relative re ference  frame moving with angular velocity 9" 

Kinetic energy 

Time 

3 2  



V Potential energy 

Velocity of rotor  mass center m V 

P Rotor phase angle 

6 Rotor deflection 

(Po Rotor precession rate or  whirl speed 

u Rotor angular velocity 

Angular velocity vector of relative reference f r ame  R '  in 

R =  (P"n 

RuR'  

z 

w Rotor natural  l a te ra l  frequency = cr  

w Rotor actual cr i t ical  speed s 
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